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Low-Voltage Pentacene Thin-Film Transistor with a
Polymer/YOx/Polymer Triple-Layer Dielectric on a Plastic
Substrate
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We report on the fabrication of pentacene thin-film transistors �TFTs� with a poly-4-vinylphenol �PVP�/yttrium oxide �YOx�/PVP
triple-layer dielectric deposited on an indium-tin oxide �ITO�/plastic substrate. Our PVP/YOx/PVP triple layer exhibited 2 orders
of magnitude lower gate current leakage than that of a PVP/YOx double layer because the former has a PVP buffer to cope with
the irregular surfaces of the ITO/plastic substrate. Adopting the triple-layer dielectric, our pentacene TFTs with NiOx and Au
source/drain electrodes exhibited high field mobilities of �1.37 and 0.84 cm2/V s, respectively, under low driving voltage con-
ditions �less than −8 V�. We conclude that our triple-layer approach is quite a promising and practical way to realize a flexible
low-voltage high-performance organic TFT on ITO/plastic substrates with rough surfaces.
© 2007 The Electrochemical Society. �DOI: 10.1149/1.2432939� All rights reserved.

Manuscript submitted September 12, 2006; revised manuscript received November 9, 2006.
Available electronically January 19, 2007.

1099-0062/2007/10�4�/H117/3/$20.00 © The Electrochemical Society
Organic electronics has been a subject of active research over the
last few decades. In particular, organic thin-film transistors �OTFTs�
have been extensively investigated due to their potentials for prac-
tical applications: drivers for flat-panel displays, low-end smart
cards, and radio-frequency identification �RFID� tags.1-4 Conven-
tional OTFTs need more than 15 V to be fully operational, which is
incompatible with portable, battery-powered applications. Recently,
low-voltage-driven OTFTs have been demonstrated by several re-
search groups, adopting high-k oxide5-7 or ultrathin organic gate
dielectrics such as self-assembled monolayers �SAMs�8,9 and thin
polymers.10-12 In our previous study, we used a hybrid polymer/
high-k oxide double-layer dielectric to achieve a low-voltage OTFT
fabricated on a glass substrate.13 However, in order to fully utilize
the key advantages of organic electronics, the hybrid dielectric sys-
tem should be adapted to flexible nonfragile substrates, which usu-
ally have more irregular surfaces than those of glass substrates while
the rough and irregular gate-substrate interface probably cause seri-
ous gate current leakage during device operation.14,15

In the present work, we have fabricated pentacene thin-film tran-
sistors �TFTs� with a poly-4-vinylphenol �PVP�/high-k yttrium ox-
ide �YOx�/PVP sandwich dielectric that is able to readily accommo-
date the rough surfaces of indium-tin oxide �ITO�/plastic substrate.
Our pentacene TFTs fabricated on a plastic substrate have clearly
demonstrated their low-voltage operation as a component of a
resistance-load inverter �at less than −8 V�.

Experimental

Prior to the deposition of dielectric films on an ITO-coated poly-
ethylenenaphthalate �PEN� plastic substrate, the substrate was
cleaned with methanol and deionized water, in that order. The first
solid PVP film was prepared from solutions of PVP and
poly�melamine-co-formaldehyde�, as a cross-linking agent, in pro-
pylene glycol monomethyl ether acetate �PGMEA�, by spin coating
and subsequent cross-linking �curing� at 175°C for 1 h in a vacuum
oven. The final thicknesses of the PVP films were approximately
45 nm as measured by a surface profiler �Alpha-Step IQ�. YOx films
were then deposited on PVP by electron-beam evaporation using
99.999% Y2O3 pellets in a vacuum chamber at room temperature in
O2 ambient. The thickness of YOx film was set to 50 nm and con-
firmed by the surface profiler. As the third layer, another 45 nm
thick PVP film was spin-coated on YOx/PVP layers. Pentacene �Al-
drich Chem. Co., �99% purity� channels were then patterned on our
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triple-sandwich dielectric layer through a shadow mask at room
temperature by thermal evaporation. We fixed the deposition rate to
1 Å/s using an effusion cell �Alphaplus Co., LTE-500S� in a
vacuum chamber �base pressure �1 � 10−7 Torr�. The pentacene
film thickness was 50 nm as monitored by a quartz crystal oscillator
and confirmed by ellipsometry. The source/drain �S/D� electrodes
�NiOx or Au� were finally deposited by thermal evaporation. The
schematic cross-sectional view of Fig. 1a shows the triple-dielectric
layer and the nominal channel length �L� of 90 �m. The width/
length �W/L� ratio of our pentacene TFTs was �5.56. The photo-
graph in Fig. 1b displays our pentacene-based semitransparent TFT
arrays �with NiOx S/D electrodes� fabricated on a flexible PEN sub-
strate.

The electrical properties of the gate-dielectric films were mea-
sured on Au/dielectric/ITO structures on PEN by capacitance–

Figure 1. �Color online� �a� Schematic cross-sectional view of our
pentacene-based TFTs �channel length, L = 90 �m, width, W = 500 �m�
and �b� photographic view of our TFT array fabricated on a flexible PEN
substrate.
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voltage �C–V� and current density–electric field J–E tests. All
current–voltage �I–V� characteristics of our TFTs, test structures,
and resistance-load inverters were measured with a semiconductor
parameter analyzer �HP 4155C, Agilent Technologies�, and C–V
measurements were made with a HP 4284 capacitance meter
�1 MHz� in the dark at room temperature. The surface of each layer
was characterized by atomic force microscopy �AFM� �PSIA, XE-
100�. The sheet resistance of NiOx films ��100 �/ � � was deter-
mined by van der Pauw method.

Results and Discussion

Figure 2a displays the C–V and J–E �inset� characteristics
of an Au/dielectric insulator/ITO structure formed on a PEN
substrate, obtained from two types of hybrid dielectric
layers: double �PVP �45 nm�/YOx �50 nm�� and triple
�PVP �45 nm�/YOx �50 nm�/PVP �45 nm��. The capacitances of
PVP/YOx and PVP/YOx/PVP layers were measured to be about
57.5 and 33 nF/cm2, respectively, because the triple layer is thicker
than the double. In our previous report, the dielectric constant, k, of
YOx and PVP films were estimated to be �14.6 and 3.7,
respectively,13 and the present capacitances measured from the two
types of hybrid layer �double and triple� are consistent with the
theoretical values �57 and 32 nF/cm2� of serially connected capaci-
tors.

According to the J–E curve of Fig. 2a inset, the PVP/YOx/PVP
triple layer exhibits quite a good dielectric strength of �2 MV/cm
based on our minimum leakage-current standard of �10−6 A/cm2.
However, the PVP/YOx double layer on an ITO/PEN substrate
showed a much higher leakage current level by about 2 orders of
magnitude than that of the triple layer and showed a very low di-
electric strength of less than 0.4 MV/cm. Because the dielectric
strength of the double layer was �2 MV/cm with a glass
substrate,13 we suspect the roughness of the ITO/plastic substrate is
responsible for the strength reduction. As mentioned in the introduc-
tion, the surface of the usual ITO/plastic substrates is relatively
rough compared to that of glass substrates. The irregular rough sur-
face of the ITO gate may cause an easy breakdown failure or a high
leakage-current level during device operation unless some buffering
process is employed to somewhat nullify the initial edged surfaces
because many peak regions in the rough surface act as electric-field
�E-field� concentration centers.14,15 The AFM surface images for
ITO/PEN �Fig. 2b� and spin-cast 45 nm thick PVP/ITO/PEN �Fig.
2c� support the J–E results of Fig. 2a. The initial ITO on PEN
substrate showed very irregular and rough surface morphology with
a root-mean-square �rms� roughness of 5.74 nm, which is incompa-
rably higher than that of ITO on glass ��1.5 nm�. However, such a
rough surface could be remarkably smoothened after spin-casting of
a PVP layer. According to the AFM image of Fig. 2c, the rms rough-
ness appeared to be only 1.7 nm after the 45 nm PVP coating. This
is because viscose PVP solution fills up the valley regions of the
ITO/plastic substrate. Because the surface of high-k YOx would fol-
low the previous film-surface contour during deposition, we would
expect that the high-k layer on a rough ITO/PEN substrate should
have a much higher surface roughness than that of the YOx depos-
ited on PVP/ITO/PEN. As a result, the E-field concentration effects
on the current leakage certainly appear greater with the PVP/YOx
double layer than with the PVP/YOx/PVP triple layer, the latter case
exhibiting much lower gate-current leakage.

Figure 3a and b show the drain current–drain voltage �ID–VD�
curves obtained from our pentacene TFTs with the PVP/YOx/PVP
triple-layer dielectric but with NiOx and Au for S/D electrodes, re-
spectively. We actually fabricated the same TFTs with the PVP/YOx
double layer, but the yield was too low ��less than 5%� to show
their performance. Both types of devices with triple layers demon-
strate desirable TFT characteristics at an operating voltage lower
than −8 V as shown in Fig. 3. The pentacene TFT with NiO elec-

Figure 2. �a� Plots of C–V and �inset� J–E char-
acteristics measured from Au-pad/dielectric
insulator/ITO/PEN substrate structures. Chosen
dielectrics were PVP �45 nm�/YOx �50 nm� and
PVP �45 nm�/YOx �50 nm�/PVP �45 nm�. �b�
AFM images of ITO film coated on PEN sub-
strate and �c� PVP �45 nm� layer spin-coated on
ITO/PEN substrate.
x
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trodes apparently had a higher saturation current of −5 �A than the
other TFT with Au electrodes �−2.2 �A� because the NiOx electrode
is better matched with pentacene than Au for hole injection.16,17 The
pentacene TFT with NiOx electrode thus exhibited higher mobility
of 1.37 cm2/V s �with a lower threshold voltage of −2 V� than that
of the other device with an Au electrode �0.84 cm2/V s�, and the
�-ID vs VG curves of Fig. 3c show the saturation mobility and the
threshold voltage trends of the two devices. According to the plots
of log10�-ID�-VG in the same figure, the on/off current ratios for the
two devices were almost identical at about 5 � 104 and their sub-
threshold slope was again nearly identical, about 0.7 V/dec.

Anticipating low-voltage operation, we also set up two
resistance-load inverters using our two pentacene TFTs �with Au and
NiOx electrodes on ITO/plastic substrates� and a load resistor �load
resistance, RL = 22 M�� �also see the inset of Fig. 4 for the inverter
scheme�. The inverters operated well under −8 V input �gate bias�.
The measured voltage gain, dVout/dVin, which is a parameter impor-
tant to subsequent stage-switching, was �3.7 and �3.1 for the pen-
tacene TFTs with NiOx and Au electrode, respectively.

Conclusion

In summary, we have fabricated pentacene TFTs with a
PVP/YOx/PVP triple layer on ITO/plastic substrate. The
PVP/YOx/PVP layer exhibited higher dielectric strength and lower
gate-current leakage than those of a PVP/YOx double layer because
the first thin PVP layer in the triple layer nullifies the irregular
surface edges of ITO/plastic substrate. Our pentacene TFTs
with the triple layer demonstrated excellent field-effect mobility

2

Figure 3. ID–VD curves obtained from our pentacene-based TFTs with �a�
NiOx and �b� Au electrodes. �c� �–ID–VG and Log10�-ID�-VG plots under a
drain saturation condition �VD = −8 V�.
�1.37 cm /V s for NiOx electrode� and an on/off current ratio of
5 � 104 at −8 V gate bias. Resistance-load inverters with our TFTs
also operated well below −8 V. We thus conclude that our triple-
layer approach is quite a promising and practical way to realize a
flexible low-voltage high-performance OTFT and to build related
circuits on ITO/plastic substrates with rough surfaces.
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